Multichannel EEG Methods to Improve the Spatial Resolution of Cortical Potential Distribution and the Signal Quality of Deep Brain Sources
نویسنده
چکیده
............................................................................................................................... i ACKNOWLEDGEMENTS ......................................................................................................... iii LIST OF ORIGINAL PUBLICATIONS ........................................................................................ vii AUTHOR’S CONTRIBUTION ................................................................................................. viii LIST OF ABBREVIATIONS ....................................................................................................... ix LIST OF SYMBOLS ................................................................................................................... x 1 INTRODUCTION ....................................................................................................... 1 2 OBJECTIVES OF THE STUDY ...................................................................................... 3 3 REVIEW OF THE LITERATURE AND THEORETICAL BACKGROUND ............................. 5 3.1 ELECTROENCEPHALOGRAPHY (EEG) ............................................................................................... 5 3.1.1 Properties of EEG ........................................................................................................... 5 3.1.2 Genesis of EEG signals ................................................................................................... 6 3.1.3 EEG electrode systems ................................................................................................... 6 3.1.4 Noise in EEG measurements .......................................................................................... 8 3.1.5 SNR Improvement of EEG measurements ................................................................... 10 3.2 EEG INVERSE PROBLEMS ............................................................................................................ 11 3.2.1 Definition of an EEG inverse problem .......................................................................... 11 3.2.2 Discrete source localization methods .......................................................................... 11 3.2.3 Source imaging methods ............................................................................................. 12 3.2.4 Formulation of the EEG inverse problem ..................................................................... 14 3.2.5 Effect of noise in EEG inverse solutions ....................................................................... 15 3.3 VOLUME CONDUCTOR MODELS ................................................................................................... 18 3.3.1 Properties of volume conductor models ...................................................................... 18 3.3.2 Geometry of the model ............................................................................................... 18 3.3.3 Electrical properties of the model ............................................................................... 20 3.3.4 Skull resistivity ............................................................................................................. 20 3.4 IMPROVEMENT OF THE SPATIAL RESOLUTION OF EEG ..................................................................... 23 3.4.1 Spatial resolution of EEG ............................................................................................. 23 3.4.2 Distributed source models and cortical imaging ......................................................... 24 3.4.3 Number of EEG electrodes in improving spatial resolution ......................................... 27 3.5 SENSITIVITY DISTRIBUTION OF EEG MEASUREMENT LEADS ............................................................... 30 3.5.1 Lead field and reciprocity theorem .............................................................................. 30 3.5.2 Sensitivity distribution of two‐electrode EEG .............................................................. 32 3.5.3 Modifications of sensitivity distributions ..................................................................... 32 4 MATERIALS AND METHODS ................................................................................... 35 4.1 VOLUME CONDUCTOR MODEL..................................................................................................... 35 4.2 EEG ELECTRODE SYSTEMS .......................................................................................................... 35 4.3 SPATIAL RESOLUTION OF CORTICAL POTENTIAL DISTRIBUTION [I‐III] ................................................... 36 4.3.1 Setting up the system of equations ............................................................................. 36 4.3.2 Finite difference method ............................................................................................. 37 4.3.3 Analysis of the accuracy of cortical potential distribution .......................................... 37 4.4 IMPROVED SIGNAL QUALITY OF DEEP EEG SOURCES [IV‐VII] ............................................................ 38 4.4.1 Synthesisation of multielectrode EEG leads ................................................................ 38 4.4.2 Sensitivity distribution analysis ................................................................................... 40 4.4.3 Simulation study .......................................................................................................... 40 4.4.4 Experimental measurements ....................................................................................... 40
منابع مشابه
EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملClassification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in EEG Signal
The right and left hand Motor Imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchi...
متن کاملClassification of EEG-based motor imagery BCI by using ECOC
AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...
متن کاملComparative assessment of the accuracy of maximum likelihood and correlated signal enhancement algorithm positioning methods in gamma camera with large square photomultiplier tubes
Introduction: The gamma cameras, based on scintillation crystal followed by an array of photomultiplier tubes (PMTs), play a crucial role in nuclear medicine. The use of square PMTs provides the minimum dead zones in the camera. The camera with square PMTs also reduces the number of PMTs relative to the detection area. Introduction of a positioning algorithm to improve the spat...
متن کامل